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Note: This presentation covers (and provides additional context/information regarding)
10.5 Introduction to PyTorch.ipynb



Autograd

• Can be slow because it executes Python code.
• Is designed for differentiating arbitrary code

• It does not have extra functionality for machine learning



Deep Learning Libraries

• There are many deep learning libraries that extend autograd to:
• Leverage low-level compiled code for faster runtimes.
• Enable forward and backwards passes on the GPU rather than CPU (more 

on this later).
• Have built-in implementations of

• Common loss functions
• Common activation functions
• Common network layers

• Fully connected feed-forward
• Convolutional layers
• Pooling layers
• Etc.



Deep Learning Libraries

• PyTorch
• The most commonly used today.
• What we will use in class.

• Tensorflow
• Produced and maintained by Google
• Integrates nicely with Google’s cloud computing platforms
• Steeper learning curve and more verbose syntax

• Keras, Caffe, MXNet, etc.
• Many less popular alternatives



PyTorch



Defining a Neural Network Architecture
Defining a Parametric Model
• Extend the nn.Module base class

• The base class provides functionality for tracking trainable parameters 
(and their gradients), moving parameters to the GPU, saving and loading 
models, etc.

• Implement two functions:
• __init__(self): Define the different layers (number of units, number 

of inputs) and different activation functions that will be used.
• forward(self, x): Perform a forward pass on input 𝑥𝑥.

• You do not need to implement any gradients or the backwards 
pass!

• PyTorch uses reverse mode automatic differentiation to automatically 
compute gradients.



Note: This model is bigger than needed for the GPA prediction problem. This allows us to more easily compare 
runtimes later, and to show a phenomenon called “overfitting”.

nn.Linear represents a linear 
parametric model with no basis. 
That is, each unit is a perceptron 
without an activation function.



bias=True indicates that each perceptron includes an extra feature that is always equal to 1 (and 
hence one extra weight beyond the number of outputs from the previous layer). This is what we discussed 
previously when we talked about appending a 1 to the columns of a data set to implement the “y-
intercept” in linear regression. For perceptrons and neural networks, this extra weight is called the bias.
 







Loss Function
• PyTorch has many built-in loss functions, including MSE:

Optimizer
• PyTorch has many built-in loss optimizers, including gradient 

descent (SGD), and Adam (SGD with a specific adaptive step size 
method).

• Several optimizers are discussed in the Jupyter notebook.
• Adam is the most common, and what we will use. net.parameters() 

contains the weights, and 
after backwards passes will 
also contain the gradient 
information. The optimizer 
uses this gradient 
information to update the 
weights.



Perform a forward pass of the 
parametric model for each 
training point.



Perform a forward pass of the 
parametric model for each 
training point.

Perform a forward pass of the 
loss function.



Perform a backwards pass, 
computing the gradient of loss 
w.r.t. each model parameter 
(each weight)



Update the weights using 
gradient descent with adaptive 
step size.



Print the loss on the training 
set.



A note about backward()

• Each model parameter has a .grad attribute storing the gradient 
of the loss w.r.t. that parameter.

• Sometimes many gradients are computed before one step
• This isn’t something we have discussed

• To accommodate this, loss.backward() adds the derivative 
of the loss w.r.t. the model parameter to whatever is already 
stored in .grad

• So, after each gradient update, we need to set .grad back to zero



Set all the parameter gradients 
to zero.



Results
• Runtime: 36.9 seconds on my desktop.

• This is training a much more complicated model 
than the simple linear model we trained using 
autograd.

• Next, evaluate on the test set.
• Note: When evaluating the model we do not need to 

store intermediate values during a forwards pass.
• Torch.no_grad() tells PyTorch not to store extra 

information during a forwards pass.

Epoch [0/100], Loss: 8.3346 
Epoch [10/100], Loss: 1.3681 
Epoch [20/100], Loss: 0.9073 
Epoch [30/100], Loss: 0.7348 
Epoch [40/100], Loss: 0.7225 
Epoch [50/100], Loss: 0.6655 
Epoch [60/100], Loss: 0.6407 
Epoch [70/100], Loss: 0.6143 
Epoch [80/100], Loss: 0.5949 
Epoch [90/100], Loss: 0.5819

Test Loss: 0.5778



Runtime
• 32.7 seconds is a significant training time for such a small data set.
• My work desktop has an Intel i9-9900k with 16 cores (CPU). 
• It also has an RTX 2070 GPU

• This has 2304 cores! (An RTX 4090 has 18,432 CUDA cores and 512 special “Tensor” 
cores)

• These GPU cores are limited in comparison to CPU cores.
• No branch prediction
• Limited cache
• Shorter pipeline (typically)

• Slower clock (1.605 GHz vs 5 MHz)
• Not designed for parallel processing (many processes running at once)

• Designed to perform many simple operations like dot products efficiently and 
in parallel

• These operations are useful for displaying graphics (e.g., applying simple functions to 
each pixel on the screen between every frame, changing things like lighting)

• They are also useful for ML! Running an ANN means computing a lot of dot products (and 
some non-linearities).



PyTorch and CUDA

• The Jupyter Notebook associated with this lecture includes 
instructions for installing NVIDIA CUDA, which is necessary to use 
PyTorch to train models on the GPU.

• Note that PyTorch is compatible with CUDA 12.1, not the latest 
CUDA 12.4.

• Notice that you need to custom-install the version of PyTorch that 
is compatible with the version of CUDA that you installed.

• Some ML libraries and tools are only compatible with specific 
versions of CUDA, and so you may need to use different versions 
of CUDA and PyTorch for different applications.



Training on the GPU



Move the model back to the CPU if you will run it or manipulate it on the CPU (e.g., saving the 
model/weights to a file). Leave on the GPU if you will only run it on the GPU.



device(type='cuda')

Epoch [0/100], Loss: 8.4130 
Epoch [10/100], Loss: 1.5344 
Epoch [20/100], Loss: 0.8190 
Epoch [30/100], Loss: 0.7992 
Epoch [40/100], Loss: 0.7053 
Epoch [50/100], Loss: 0.6705 
Epoch [60/100], Loss: 0.6278 
Epoch [70/100], Loss: 0.6009 
Epoch [80/100], Loss: 0.5837 
Epoch [90/100], Loss: 0.5744



Mini-Batches (GPU)

• Typically, mini-batches are computed on the CPU.
• They are then passed to the GPU to perform a gradient update.
• PyTorch’s DataLoader object facilitates passing data efficiently 

(using multiple CPU cores) between the CPU and GPU.
• Often GPUs have limited memory, so entire data sets may not fit on the 

GPU.
• RTX 2070: 8 GB memory, 2304 CUDA cores, ~$350
• RTX 4090: 24 GB memory, 16384 CUDA cores, ~$1,500
• A100: 80 GB memory, 6912 CUDA cores, ~$8,000

• Custom made for deep learning with large models.
• Mini-batches can be created using the PyTorch DataLoader.

• DataLoader works with PyTorch’s own data set object: TensorDataset.



Convert the training data 
into a TensorDataset, so 
that it is compatible with 
DataLoader.

Note: batch_size = 100



Update tracking of losses to 
compute the average loss 
per mini-batch each epoch



Loop over batches using the 
DataLoader, sending 
batches to the GPU.



We do not need to “remove” 
the batches from GPU 
memory. This is done 
automatically.



What do we expect to happen?

• Recall, 100 epochs before:

• Now we run 100 epochs using mini-batches of size 100

Epoch [0/100], Loss: 8.4130 
Epoch [10/100], Loss: 1.5344 
Epoch [20/100], Loss: 0.8190 
Epoch [30/100], Loss: 0.7992 
Epoch [40/100], Loss: 0.7053 
Epoch [50/100], Loss: 0.6705 
Epoch [60/100], Loss: 0.6278 
Epoch [70/100], Loss: 0.6009 
Epoch [80/100], Loss: 0.5837 
Epoch [90/100], Loss: 0.5744



Epoch [0/100], Average Loss: 0.7102 
Epoch [10/100], Average Loss: 0.5707 
Epoch [20/100], Average Loss: 0.5621 
Epoch [30/100], Average Loss: 0.5527 
Epoch [40/100], Average Loss: 0.5417 
Epoch [50/100], Average Loss: 0.5260 
Epoch [60/100], Average Loss: 0.5058 
Epoch [70/100], Average Loss: 0.4798 
Epoch [80/100], Average Loss: 0.4524 
Epoch [90/100], Average Loss: 0.4282

We have never seen sample MSEs so low!



Evaluate on the test set

• Remember to use torch.no_grad() for faster evaluation

• Note: 
• The net model was moved back to the CPU.
• The testing data is on the CPU.
• We could have left the net model on the GPU and moved the testing data 

to the GPU.



Epoch [0/100], Average Loss: 0.7102 
Epoch [10/100], Average Loss: 0.5707 
Epoch [20/100], Average Loss: 0.5621 
Epoch [30/100], Average Loss: 0.5527 
Epoch [40/100], Average Loss: 0.5417 
Epoch [50/100], Average Loss: 0.5260 
Epoch [60/100], Average Loss: 0.5058 
Epoch [70/100], Average Loss: 0.4798 
Epoch [80/100], Average Loss: 0.4524 
Epoch [90/100], Average Loss: 0.4282

No method has achieved a test loss so… high!

Test Loss: 0.7296

Question: Why is the test loss so much higher than the training loss? 
Answer: The network has overfit to the training data.



Overfitting

• Recall that the training error for nearest neighbor (NN) was zero, 
but the testing error was large.

• NN essentially “memorized” the training data, and gave good predictions 
for the training data.

• The model did not generalize to new inputs: it had high errors for points 
not in the training data.

• When this happens using parametric models, it is called 
overfitting.



10 points from 𝑦𝑦 = 𝑥𝑥 + 𝑁𝑁(0,1)



Least Squares fit, 10th Degree Polynomial

• Linear parametric model using 
10th degree polynomial basis.

• The model perfectly predicts 
every training point!

• The model will have significant 
error for new points.



Least Squares fit, 10th Degree Polynomial

• Linear parametric model using 
10th degree polynomial basis.

• The model perfectly predicts 
every training point!

• The model will have significant 
error for new points.

• A linear fit (with no basis) would 
provide better predictions for 
new points!



Overfitting

• When training parametric models with gradient descent, initially 
the loss decreases on the training and testing sets.

• The model is learning general trends in the data that generalize to new 
points.

• Eventually, the model starts to learn specific trends in the training 
data that do not generalize to new points.

• This typically results in lower loss on the training data, but higher loss (or 
no change in loss) for the testing data.



Plotting Training vs Testing Loss (General Case)

Testing loss

Training loss

Iteration or Epochs

Overfitting begins

Loss

Idea: Stop training when the 
testing loss starts increasing.



Plotting Training vs Testing Loss (GPA Data)

• With a relatively simple 
problem, overfitting begins 
within the first epoch!



Overfitting and Model Complexity/Capacity

• Notice that we can’t overfit this 
data using a line!

• The model complexity or model 
capacity refers to a parametric 
model’s ability to represent 
general functions.

• Models with higher 
complexity/capacity can represent 
more functions.

• Models with higher 
complexity/capacity are more prone 
to over-fitting.



Avoiding Over-Fitting (Overview of Strategies)

1. Early stopping: Stop training when testing error increases. 
• Typically split data into training, validation, and testing
• Stop training when the error on the validation set begins to increase
• This ensures that the training process never looks at the testing data

2. Include a “regularization” term in the loss function
• Complete details are beyond the scope of this course.
• Regularization terms increase the loss the farther the weight vector is 

from zero: 𝐿𝐿new 𝑤𝑤,𝐷𝐷 = 𝐿𝐿 𝑤𝑤,𝐷𝐷 + 𝜆𝜆‖𝑤𝑤‖
• Often using the L1 norm, 𝑤𝑤 = ∑𝑗𝑗 𝑤𝑤𝑗𝑗  or the L2 norm 𝑤𝑤 = ∑𝑗𝑗 𝑤𝑤𝑗𝑗2.

3. Other strategies (e.g., dropout)
4. Use a large network! ⋅  denotes a norm (a 

notion of “length”)



“Use a large network”: Double Descent

• Large networks seem like they should be particularly prone to 
overfitting.

• When trained sufficiently on large amounts of data, empirical 
evidence suggests that deep (large) networks tend not to over-fit!

This phenomenon, called 
double descent, is an 
active research topic!



End
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