
COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 10.4: PyTorch and Overfitting
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Note: This presentation covers (and provides additional context/information regarding)
10.5 Introduction to PyTorch.ipynb

Autograd

• Can be slow because it executes Python code.
• Is designed for differentiating arbitrary code

• It does not have extra functionality for machine learning

Deep Learning Libraries

• There are many deep learning libraries that extend autograd to:
• Leverage low-level compiled code for faster runtimes.
• Enable forward and backwards passes on the GPU rather than CPU (more

on this later).
• Have built-in implementations of

• Common loss functions
• Common activation functions
• Common network layers

• Fully connected feed-forward
• Convolutional layers
• Pooling layers
• Etc.

Deep Learning Libraries

• PyTorch
• The most commonly used today.
• What we will use in class.

• Tensorflow
• Produced and maintained by Google
• Integrates nicely with Google’s cloud computing platforms
• Steeper learning curve and more verbose syntax

• Keras, Caffe, MXNet, etc.
• Many less popular alternatives

PyTorch

Defining a Neural Network Architecture
Defining a Parametric Model
• Extend the nn.Module base class

• The base class provides functionality for tracking trainable parameters
(and their gradients), moving parameters to the GPU, saving and loading
models, etc.

• Implement two functions:
• __init__(self): Define the different layers (number of units, number

of inputs) and different activation functions that will be used.
• forward(self, x): Perform a forward pass on input 𝑥𝑥.

• You do not need to implement any gradients or the backwards
pass!

• PyTorch uses reverse mode automatic differentiation to automatically
compute gradients.

Note: This model is bigger than needed for the GPA prediction problem. This allows us to more easily compare
runtimes later, and to show a phenomenon called “overfitting”.

nn.Linear represents a linear
parametric model with no basis.
That is, each unit is a perceptron
without an activation function.

bias=True indicates that each perceptron includes an extra feature that is always equal to 1 (and
hence one extra weight beyond the number of outputs from the previous layer). This is what we discussed
previously when we talked about appending a 1 to the columns of a data set to implement the “y-
intercept” in linear regression. For perceptrons and neural networks, this extra weight is called the bias.

Loss Function
• PyTorch has many built-in loss functions, including MSE:

Optimizer
• PyTorch has many built-in loss optimizers, including gradient

descent (SGD), and Adam (SGD with a specific adaptive step size
method).

• Several optimizers are discussed in the Jupyter notebook.
• Adam is the most common, and what we will use. net.parameters()

contains the weights, and
after backwards passes will
also contain the gradient
information. The optimizer
uses this gradient
information to update the
weights.

Perform a forward pass of the
parametric model for each
training point.

Perform a forward pass of the
parametric model for each
training point.

Perform a forward pass of the
loss function.

Perform a backwards pass,
computing the gradient of loss
w.r.t. each model parameter
(each weight)

Update the weights using
gradient descent with adaptive
step size.

Print the loss on the training
set.

A note about backward()

• Each model parameter has a .grad attribute storing the gradient
of the loss w.r.t. that parameter.

• Sometimes many gradients are computed before one step
• This isn’t something we have discussed

• To accommodate this, loss.backward() adds the derivative
of the loss w.r.t. the model parameter to whatever is already
stored in .grad

• So, after each gradient update, we need to set .grad back to zero

Set all the parameter gradients
to zero.

Results
• Runtime: 36.9 seconds on my desktop.

• This is training a much more complicated model
than the simple linear model we trained using
autograd.

• Next, evaluate on the test set.
• Note: When evaluating the model we do not need to

store intermediate values during a forwards pass.
• Torch.no_grad() tells PyTorch not to store extra

information during a forwards pass.

Epoch [0/100], Loss: 8.3346
Epoch [10/100], Loss: 1.3681
Epoch [20/100], Loss: 0.9073
Epoch [30/100], Loss: 0.7348
Epoch [40/100], Loss: 0.7225
Epoch [50/100], Loss: 0.6655
Epoch [60/100], Loss: 0.6407
Epoch [70/100], Loss: 0.6143
Epoch [80/100], Loss: 0.5949
Epoch [90/100], Loss: 0.5819

Test Loss: 0.5778

Runtime
• 32.7 seconds is a significant training time for such a small data set.
• My work desktop has an Intel i9-9900k with 16 cores (CPU).
• It also has an RTX 2070 GPU

• This has 2304 cores! (An RTX 4090 has 18,432 CUDA cores and 512 special “Tensor”
cores)

• These GPU cores are limited in comparison to CPU cores.
• No branch prediction
• Limited cache
• Shorter pipeline (typically)

• Slower clock (1.605 GHz vs 5 MHz)
• Not designed for parallel processing (many processes running at once)

• Designed to perform many simple operations like dot products efficiently and
in parallel

• These operations are useful for displaying graphics (e.g., applying simple functions to
each pixel on the screen between every frame, changing things like lighting)

• They are also useful for ML! Running an ANN means computing a lot of dot products (and
some non-linearities).

PyTorch and CUDA

• The Jupyter Notebook associated with this lecture includes
instructions for installing NVIDIA CUDA, which is necessary to use
PyTorch to train models on the GPU.

• Note that PyTorch is compatible with CUDA 12.1, not the latest
CUDA 12.4.

• Notice that you need to custom-install the version of PyTorch that
is compatible with the version of CUDA that you installed.

• Some ML libraries and tools are only compatible with specific
versions of CUDA, and so you may need to use different versions
of CUDA and PyTorch for different applications.

Training on the GPU

Move the model back to the CPU if you will run it or manipulate it on the CPU (e.g., saving the
model/weights to a file). Leave on the GPU if you will only run it on the GPU.

device(type='cuda')

Epoch [0/100], Loss: 8.4130
Epoch [10/100], Loss: 1.5344
Epoch [20/100], Loss: 0.8190
Epoch [30/100], Loss: 0.7992
Epoch [40/100], Loss: 0.7053
Epoch [50/100], Loss: 0.6705
Epoch [60/100], Loss: 0.6278
Epoch [70/100], Loss: 0.6009
Epoch [80/100], Loss: 0.5837
Epoch [90/100], Loss: 0.5744

Mini-Batches (GPU)

• Typically, mini-batches are computed on the CPU.
• They are then passed to the GPU to perform a gradient update.
• PyTorch’s DataLoader object facilitates passing data efficiently

(using multiple CPU cores) between the CPU and GPU.
• Often GPUs have limited memory, so entire data sets may not fit on the

GPU.
• RTX 2070: 8 GB memory, 2304 CUDA cores, ~$350
• RTX 4090: 24 GB memory, 16384 CUDA cores, ~$1,500
• A100: 80 GB memory, 6912 CUDA cores, ~$8,000

• Custom made for deep learning with large models.
• Mini-batches can be created using the PyTorch DataLoader.

• DataLoader works with PyTorch’s own data set object: TensorDataset.

Convert the training data
into a TensorDataset, so
that it is compatible with
DataLoader.

Note: batch_size = 100

Update tracking of losses to
compute the average loss
per mini-batch each epoch

Loop over batches using the
DataLoader, sending
batches to the GPU.

We do not need to “remove”
the batches from GPU
memory. This is done
automatically.

What do we expect to happen?

• Recall, 100 epochs before:

• Now we run 100 epochs using mini-batches of size 100

Epoch [0/100], Loss: 8.4130
Epoch [10/100], Loss: 1.5344
Epoch [20/100], Loss: 0.8190
Epoch [30/100], Loss: 0.7992
Epoch [40/100], Loss: 0.7053
Epoch [50/100], Loss: 0.6705
Epoch [60/100], Loss: 0.6278
Epoch [70/100], Loss: 0.6009
Epoch [80/100], Loss: 0.5837
Epoch [90/100], Loss: 0.5744

Epoch [0/100], Average Loss: 0.7102
Epoch [10/100], Average Loss: 0.5707
Epoch [20/100], Average Loss: 0.5621
Epoch [30/100], Average Loss: 0.5527
Epoch [40/100], Average Loss: 0.5417
Epoch [50/100], Average Loss: 0.5260
Epoch [60/100], Average Loss: 0.5058
Epoch [70/100], Average Loss: 0.4798
Epoch [80/100], Average Loss: 0.4524
Epoch [90/100], Average Loss: 0.4282

We have never seen sample MSEs so low!

Evaluate on the test set

• Remember to use torch.no_grad() for faster evaluation

• Note:
• The net model was moved back to the CPU.
• The testing data is on the CPU.
• We could have left the net model on the GPU and moved the testing data

to the GPU.

Epoch [0/100], Average Loss: 0.7102
Epoch [10/100], Average Loss: 0.5707
Epoch [20/100], Average Loss: 0.5621
Epoch [30/100], Average Loss: 0.5527
Epoch [40/100], Average Loss: 0.5417
Epoch [50/100], Average Loss: 0.5260
Epoch [60/100], Average Loss: 0.5058
Epoch [70/100], Average Loss: 0.4798
Epoch [80/100], Average Loss: 0.4524
Epoch [90/100], Average Loss: 0.4282

No method has achieved a test loss so… high!

Test Loss: 0.7296

Question: Why is the test loss so much higher than the training loss?
Answer: The network has overfit to the training data.

Overfitting

• Recall that the training error for nearest neighbor (NN) was zero,
but the testing error was large.

• NN essentially “memorized” the training data, and gave good predictions
for the training data.

• The model did not generalize to new inputs: it had high errors for points
not in the training data.

• When this happens using parametric models, it is called
overfitting.

10 points from 𝑦𝑦 = 𝑥𝑥 + 𝑁𝑁(0,1)

Least Squares fit, 10th Degree Polynomial

• Linear parametric model using
10th degree polynomial basis.

• The model perfectly predicts
every training point!

• The model will have significant
error for new points.

Least Squares fit, 10th Degree Polynomial

• Linear parametric model using
10th degree polynomial basis.

• The model perfectly predicts
every training point!

• The model will have significant
error for new points.

• A linear fit (with no basis) would
provide better predictions for
new points!

Overfitting

• When training parametric models with gradient descent, initially
the loss decreases on the training and testing sets.

• The model is learning general trends in the data that generalize to new
points.

• Eventually, the model starts to learn specific trends in the training
data that do not generalize to new points.

• This typically results in lower loss on the training data, but higher loss (or
no change in loss) for the testing data.

Plotting Training vs Testing Loss (General Case)

Testing loss

Training loss

Iteration or Epochs

Overfitting begins

Loss

Idea: Stop training when the
testing loss starts increasing.

Plotting Training vs Testing Loss (GPA Data)

• With a relatively simple
problem, overfitting begins
within the first epoch!

Overfitting and Model Complexity/Capacity

• Notice that we can’t overfit this
data using a line!

• The model complexity or model
capacity refers to a parametric
model’s ability to represent
general functions.

• Models with higher
complexity/capacity can represent
more functions.

• Models with higher
complexity/capacity are more prone
to over-fitting.

Avoiding Over-Fitting (Overview of Strategies)

1. Early stopping: Stop training when testing error increases.
• Typically split data into training, validation, and testing
• Stop training when the error on the validation set begins to increase
• This ensures that the training process never looks at the testing data

2. Include a “regularization” term in the loss function
• Complete details are beyond the scope of this course.
• Regularization terms increase the loss the farther the weight vector is

from zero: 𝐿𝐿new 𝑤𝑤,𝐷𝐷 = 𝐿𝐿 𝑤𝑤,𝐷𝐷 + 𝜆𝜆‖𝑤𝑤‖
• Often using the L1 norm, 𝑤𝑤 = ∑𝑗𝑗 𝑤𝑤𝑗𝑗 or the L2 norm 𝑤𝑤 = ∑𝑗𝑗 𝑤𝑤𝑗𝑗2.

3. Other strategies (e.g., dropout)
4. Use a large network! ⋅ denotes a norm (a

notion of “length”)

“Use a large network”: Double Descent

• Large networks seem like they should be particularly prone to
overfitting.

• When trained sufficiently on large amounts of data, empirical
evidence suggests that deep (large) networks tend not to over-fit!

This phenomenon, called
double descent, is an
active research topic!

End

	COMPSCI 389�Introduction to Machine Learning
	Note: This presentation covers (and provides additional context/information regarding)�10.5 Introduction to PyTorch.ipynb
	Autograd
	Deep Learning Libraries
	Deep Learning Libraries
	PyTorch
	Defining a Neural Network Architecture�Defining a Parametric Model
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Loss Function
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	A note about backward()
	Slide Number 19
	Results
	Runtime
	PyTorch and CUDA
	Training on the GPU
	Slide Number 24
	Slide Number 25
	Mini-Batches (GPU)
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	What do we expect to happen?
	Slide Number 32
	Evaluate on the test set
	Slide Number 34
	Overfitting
	10 points from 𝑦=𝑥+𝑁(0,1)
	Least Squares fit, 10th Degree Polynomial
	Least Squares fit, 10th Degree Polynomial
	Overfitting
	Plotting Training vs Testing Loss (General Case)
	Plotting Training vs Testing Loss (GPA Data)
	Overfitting and Model Complexity/Capacity
	Avoiding Over-Fitting (Overview of Strategies)
	“Use a large network”: Double Descent
	End

