COMPSCI 389
Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 - 3:45 Building: Morrill2 Room: 222

Topic 10.4: PyTorch and Overfitting
Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Note: This presentation covers (and provides additional context/information regarding)
10.5 Introduction to PyTorch.ipynb

Autograd

* Can be slow because it executes Python code.

* |s designhed for differentiating arbitrary code
* |t does not have extra functionality for machine learning

Deep Learning Libraries

* There are many deep learning libraries that extend autograd to:
* Leverage low-level compiled code for faster runtimes.

* Enable forward and backwards passes on the GPU rather than CPU (more
on this later).

* Have built-in implementations of
e Common loss functions
« Common activation functions
* Common network layers
* Fully connected feed-forward
* Convolutional layers
* Pooling layers
* Etc.

Deep Learning Libraries

* PyTorch
* The most commonly used today.
* What we will use in class.

* Tensorflow
* Produced and maintained by Google
* Integrates nicely with Google’s cloud computing platforms
* Steeper learning curve and more verbose syntax

* Keras, Caffe, MXNet, etc.
* Many less popular alternatives

PyTorch

You can install PyTorch with:

I pip install torch torchvision

We will use the following imports:

New to this topic:

import torch

import torch.nn as nn # For defining our neural network model

import torch.optim as optim # For training the model using data

from torch.utils.data import TensorDataset, DatalLoader # For making mini-batches

Defining a Neural Network Architecture
Defining a Parametric Model

e Extend the nn .Module base class

* The base class provides functionality for tracking trainable parameters
(and their gradients), moving parameters to the GPU, saving and loading
models, etc.

* Implement two functions:

* 1nit (self):Define the different layers (number of units, number
of inputs) and different activation functions that will be used.

* forward(self, x):Perform aforward passoninputx.

* You do not need to implement any gradients or the backwards

pass!

* PyTorch uses reverse mode automatic differentiation to automatically
compute gradients.

Note: This model is bigger than needed for the GPA prediction problem. This allows us to more easily compare
runtimes later, and to show a phenomenon called “overfitting”.

class FullyConnectedNetwork(nn.Module):

def init_ (self):
First call the nn.Module constructor to initialize other parts of the model. Always do this first.
super(FullyConnectedNetwork, self). init ()

Define layers. The lines below create the layers (memory is allocated for the weights here).
self.fcl = nn.Linear(9, 1024) # First hidden layer with 1024 neurons and 9 inputs.

self.fc2 = nn.Linear(1024, 512) # Second hidden layer with 512 neurons and 1024 inputs.
self.fc3 = nn.Linear(512, 128) # Third hidden layer with 128 neurons and 512 inputs.

self.fc4 = nn.Linear(128, 1) # Output layer with 1 neuron and 128 inputs.

Define activation functiom: nn.Linear represents a linear

self.relu = nn.ReLU() parametric model with no basis.

def forward(self, x): That Is, each uplt s 8 perce.ptron
Pass data through the network without an activation function.

self.relu(self.fcl(x))

self.relu(self.fc2(x))

self.relu(self.fc3(x))

= self.fcd(x) # No activation after the output layer
return x

X X X X #=
I

We can now create an instance of this model:

Create an instance of the network
net = FullyConnectedNetwork()

The network structure is printed as a sanity check
print(net)

FullyConnectedNetwork(
(fcl): Linear(in_features=9, out_features=1024, bias=True)
(fc2): Linear(in_features=1024, out features=512, bias=True)
(fc3): Linear(in_features=512, out features=128, bias=True)
(fc4): Linear(in_features=128, out features=1, bias=True)
(relu): RelLU()

) bias=True indicates that each perceptron includes an extra feature that is always equalto 1 (and
hence one extra weight beyond the number of outputs from the previous layer). This is what we discussed
previously when we talked about appending a 1 to the columns of a data set to implement the “y-
intercept” in linear regression. For perceptrons and neural networks, this extra weight is called the bias.

Next, let's load the GPA data, split it into training and testing, and standardize it.
+ Code + Markdown

df = pd.read_csv("https://people.cs.umass.edu/~pthomas/courses/COMPSCI_389_Spring2024/GPA.csv", delimiter=',")
#df = pd.read csv("data/GPA.csv", delimiter=',")

We already loaded X and y, but do it again as a reminder
X = df.iloc[:, :-1]
y = df.iloc[:, -1]

Split the data into training and testing sets
X_train, X test, y train, y test = train test split(X, y, test size=0.2, shuffle=True)

Standardize the features

scaler = StandardScaler()

X_train = scaler.fit transform(X_train) # This sets the min/max values from the training data (without looking
X_test = scaler.transform(X_test) # This uses the min/max scaling values chosen during training! (transfc

Python

PyTorch has its own objects for storing data, called PyTorch tensors. These are simply multidimensional arrays. Let's
convert our data to these tensor objects. Note that the tensor constructor is not compatible with pandas.Series
objects, so we call y_train.values and y_test.values to convert these to numpy.ndarray objects.

Convert data to PyTorch tensors

X_train_tensor = torch.tensor(X_train, dtype=torch.float32)

y_train_tensor = torch.tensor(y_train.values, dtype=torch.float32).view(-1,1)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)

y _test tensor = torch.tensor(y_test.values, dtype=torch.float32).view(-1,1)

Python

Loss Function
* PyTorch has many built-in loss functions, including MSE:

loss_function = nn.MSELoss()

Optimizer

* PyTorch has many built-in loss optimizers, including gradient
descent (SGD), and Adam (SGD with a specific adaptive step size
method).

* Several optimizers are discussed in the Jupyter notebook.

. . net.parameters
* Adam is the most common, and what we will use. P ¥

contains the weights, and
after backwards passes will
also contain the gradient
information. The optimizer
uses this gradient
information to update the
weights.

optimizer = optim.Adam(net.parameters())

epochs = 100 # The number of epochs to run

for epoch in range(epochs):

Forward pass

y_pred = net(X_train_tensor) <

Perform a forward pass of the
parametric model for each
training point.

epochs = 100 # The number of epochs to run
for epoch in range(epochs):

Perform a forward pass of the
parametric model for each
training point.

Forward pass
y_pred = net(X_train_tensor)

Compute loss

loss = loss function(y pred, y_tPaiﬂ_tEﬂSDP)4.__----~§§

Perform a forward pass of the
loss function.

epochs = 100 # The number of epochs to run

for epoch in range(epochs):

Forward pass
y_pred = net(X_train_tensor)

Compute loss
loss = loss_function(y pred, y train_tensor)

Backward pass and optimize
loss.backward()<—

Perform a backwards pass,
computing the gradient of loss
w.r.t. each model parameter
(each weight)

epochs = 100 # The number of epochs to run
for epoch in range(epochs):

Forward pass
y_pred = net(X_train_tensor)

Compute loss
loss = loss_function(y pred, y train_tensor)

Backward pass and optimize
loss.backward()

Update the weights using
gradient descent with adaptive
step size.

optimizer.step() <«

epochs = 100 # The number of epochs to run
for epoch in range(epochs):

Forward pass
y_pred = net(X_train_tensor)

Compute loss
loss = loss_function(y pred, y train_tensor)

Backward pass and optimize
loss.backward()
optimizer.step()

Print the loss on the training

Print statistics "”__,,——————-Set
if epoch % 10 == @:

print(f'Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}")

A note about backward ()

* Each model parameter has a . grad attribute storing the gradient
of the loss w.r.t. that parameter.

* Sometimes many gradients are computed before one step
* Thisisn’t something we have discussed

* To accommodate this, 1loss.backward () addsthe derivative

of the loss w.r.t. the model parameter to whatever is already
stored in .grad

* S0, after each gradient update, we need to set . grad back to zero

epochs = 100 # The number of epochs to run
for epoch in range(epochs):

Zero the gradients

optimizer.zero_grad()< Set all the parameter gradients

to zero.

Forward pass
y_pred = net(X_train_tensor)

Compute loss
loss = loss_function(y pred, y train_tensor)

Backward pass and optimize
loss.backward()
optimizer.step()

Print statistics
if epoch % 10 ==
print(f'Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}")

Results

* Runtime: 36.9 seconds on my desktop.

* This is training a much more complicated model
than the simple linear model we trained using
autograd.

* Next, evaluate on the test set.

* Note: When evaluating the model we do not need to
store intermediate values during a forwards pass.

* Torch.no_grad() tells PyTorch not to store extra
information during a forwards pass.

Evaluate the model with test data

with torch.no_grad():
y_pred _test = net(X_ test tensor)
test loss = loss function(y_pred test, y test tensor)
print(f'Test Loss: {test loss.item():.4f}")

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

Test Loss:

[0/100], Loss:

[10/100],
[20/100],
[30/100],
[40/100],
[50/100],
[60/100],
[70/100],
[80/100],
[90/100],

Loss:

8

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

0.5778

.3346

OO OO K

.3681
.9073
.7348
.7225
.6655
.6407
.6143
.5949
.5819

Runtime

* 32.7 seconds is a significant training time for such a small data set.
* My work desktop has an Intel i9-9900k with 16 cores (CPU).

* [talso has an RTX 2070 GPU
* This h)as 2304 cores! (An RTX 4090 has 18,432 CUDA cores and 512 special “Tensor”
cores

* These GPU cores are limited in comparison to CPU cores.

* No branch prediction
* Limited cache
e Shorter pipeline (typically)
* Slower clock (1.605 GHz vs 5 MHz)
* Not designed for parallel processing (many processes running at once)

Designed to perform many simple operations like dot products efficiently and

in parallel

* These operations are useful for displaying graphics (e.g., applylnﬁsmﬁle functions to
each pixel on the screen between every frame, changlng things like lighting)

* They are also useful for ML! Running an ANN means computing a ot of dot products (and
some non-linearities).

PyTorch and CUDA

* The Jupyter Notebook associated with this lecture includes
instructions for installing NVIDIA CUDA, which is necessary to use

PyTorch to train models on the GPU.

* Note that PyTorch is compatible with CUDA 12.1, not the latest
CUDA 12.4.

* Notice that you need to custom-install the version of PyTorch that
is compatible with the version of CUDA that you installed.

* Some ML libraries and tools are only compatible with specific
versions of CUDA, and so you may need to use different versions
of CUDA and PyTorch for different applications.

Training on the GPU

O

Check if CUDA (GPU support) is available.
I device = torch.device("cuda” if torch.cuda.is_available() else “cpu”)
o Move the network to the GPU.
I net.to(device)
o Move the training data to the GPU.
I X_train_tensor = X_train_tensor.to(device)
I y_train_tensor = y_train_tensor.to(device)
o When we are done training the model, we can then move it back to the CPU:

I net.to('cpu’)

net = FullyConnectedNetwork() # Create a new network to train from scratch

optimizer = optim.Adam(net.parameters()) # Create the optimizer for this network

|device = torch.device("cuda"™ if torch.cuda.is_available() else "cpu")l # Check if CUDA (GPU) available
display(device) # Confirm that the GPU is being used

net.to(device) # Move the network to GPU if available

X_train_tensor = X_train_tensor.to(device)| # Also move the tensors to the chosen device

y_train_tensor.to(device)

y_train_tensor

epochs = 100 # Number of epochs
for epoch in range(epochs):
optimizer.zero_grad() # Zero the gradients
y_pred = net(X_train_tensor) # Forward pass
loss = loss_function(y_pred, y_train_tensor) # Compute the loss for printing/plotting
loss.backward() # Backwards pass
optimizer.step() # Update the weights using the optimizer
if epoch % 10 == @: # Print statistics
print(f'Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}")

|net.t0('cpu'}| # Move the model back to the CPU

Move the model back to the CPU if you will run it or manipulate it on the CPU (e.g., saving the
model/weights to a file). Leave on the GPU if you will only run it on the GPU.

device(type="'cuda"')

v/ 36.9s

Epoch [0/100], Loss: 8.4130

Epoch [10/100], Loss: 1.5344

Epoch [20/100], Loss: 0.8190

Epoch [30/100], Loss: ©.7992

Epoch [40/100], Loss: ©.7053 v/ 2.6s
Epoch [50/100], Loss: 0.6705

Epoch [60/100], Loss: 0.6278

Epoch [70/100], Loss: 0.6009

Epoch [80/100], Loss: 0.5837

Epoch [90/100], Loss: ©.5744

Mini-Batches (GPU)

* Typically, mini-batches are computed on the CPU.
* They are then passed to the GPU to perform a gradient update.

* PyTorch’s DataLoader object facilitates passing data efficiently
(using multiple CPU cores) between the CPU and GPU.

. 81|‘DtLeJn GPUs have limited memory, so entire data sets may not fit on the
« RTX2070: 8 GB memory, 2304 CUDA cores, ~$350
* RTX 4090: 24 GB memory, 16384 CUDA cores, ~$1,500
* A100: 80 GB memory, 6912 CUDA cores, ~$8,000

* Custom made for deep learning with large models.

* Mini-batches can be created using the PyTorch DataLoader.
* DataLoader works with PyTorch’s own data set object: TensorDataset.

net = FullyConnectedNetwork()

optimizer = optim.Adam(net.parameters())

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)

Convert the training data # Create a TensorDataset and Dataloader

into a TensorDataset, so train_dataset = TensorDataset(X_train_tensor, y_train_tensor)

that it is compatible with train_loader = Dataloader(dataset=train_dataset, batch_size=100, shuffle=True)
DatalLoader.

epochs = 100
for epoch in range(epochs):

Note: batch size = 100

total loss = 9.0 # To sum the loss over all batches
num_batches = © # A lazy way to get the number of batches: count them
for X _batch, y batch in train_loader: # Iterate over mini-batches

X _batch, y batch = X batch.to(device), y batch.to(device) # Move batches to GPU
optimizer.zero_grad()

y_pred = net(X_batch)

loss = loss_function(y_pred, y_batch)

total loss += loss.item()

num_batches += 1

loss.backward()

optimizer.step()

Calculate the average loss over all mini-batches in this epoch
average_loss = total_loss / num_batches

if epoch % 16 == @: # Print statistics
print(f'Epoch [{epoch}/{epochs}], Average Loss: {average loss:.4f}')
net.to('cpu') # Move the model back to CPU if needed

net = FullyConnectedNetwork()

optimizer = optim.Adam(net.parameters())

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)

Create a TensorDataset and Dataloader
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = Dataloader(dataset=train_dataset, batch_size=100, shuffle=True)

epochs = 100
for epoch in range(epochs):

total loss = 0.0 # To sum the loss over all batches
num_batches = © # A lazy way to get the number of batches: count them
for X _batch, y batch in train_loader: # Iterate over mini-batches

X _batch, y batch = X batch.to(device), y batch.to(device) # Move batches to GPU
optimizer.zero_grad()
y_pred = net(X_batch)

Update tracking of losses to loss = loss_function(y_pred, y_batch)
compute the average loss total_loss += loss.item()

per mini-batch each epoch DL FEEEss =
loss.backward()

optimizer.step()

Calculate the average loss over all mini-batches in this epoch
average_loss = total_loss / num_batches

if epoch % 16 == @: # Print statistics
print(f'Epoch [{epoch}/{epochs}], Average Loss: {average loss:.4f}')
net.to('cpu') # Move the model back to CPU if needed

net = FullyConnectedNetwork()

optimizer = optim.Adam(net.parameters())

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)

Create a TensorDataset and Dataloader
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = Dataloader(dataset=train_dataset, batch_size=100, shuffle=True)

epochs = 100
for epoch in range(epochs):

total loss = 0.0 # To sum the loss over all batches
Loop over batches using the num_batches = © # A lazy way to get the number of batches: count them
DataLoader, sending for X _batch, y batch in train_loader: # Iterate over mini-batches
X _batch, y batch = X batch.to(device), y batch.to(device) # Move batches to GPU

batches to the GPU.

optimizer.zero_grad()

y_pred = net(X_batch)

loss = loss_function(y_pred, y_batch)
total loss += loss.item()
num_batches += 1
loss.backward()
optimizer.step()

Calculate the average loss over all mini-batches in this epoch
average_loss = total_loss / num_batches

if epoch % 16 == @: # Print statistics
print(f'Epoch [{epoch}/{epochs}], Average Loss: {average loss:.4f}')
net.to('cpu') # Move the model back to CPU if needed

We do not need to “remove”
the batches from GPU
memory. Thisis done
automatically.

net = FullyConnectedNetwork()

optimizer = optim.Adam(net.parameters())

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)

Create a TensorDataset and Dataloader
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = Dataloader(dataset=train_dataset, batch_size=100, shuffle=True)

epochs = 100
for epoch in range(epochs):

total loss = 0.0 # To sum the loss over all batches

num_batches = © # A lazy way to get the number of batches: count them

for X _batch, y batch in train_loader: # Iterate over mini-batches
X _batch, y batch = X batch.to(device), y batch.to(device) # Move batches to GPU

optimizer.zero_grad()

y_pred = net(X_batch)

loss = loss_function(y_pred, y_batch)
total loss += loss.item()
num_batches += 1
loss.backward()
optimizer.step()

Calculate the average loss over all mini-batches in this epoch
average_loss = total_loss / num_batches

if epoch % 16 == @: # Print statistics
print(f'Epoch [{epoch}/{epochs}], Average Loss: {average loss:.4f}')

net.to('cpu') # Move the model back to CPU if needed

What do we expect to happen?

* Recall, 100 epochs before:

Epoch [0/100], Loss: 8.4130

Epoch [10/100], Loss: 1.5344
Epoch [20/100], Loss: 0.8190
Epoch [30/100], Loss: ©0.7992
Epoch [40/100], Loss: 0.7053
Epoch [50/100], Loss: 0.6705
Epoch [60/100], Loss: 0.6278
Epoch [70/100], Loss: 0.6009
Epoch [80/100], Loss: 0.5837
Epoch [90/100], Loss: 0.5744

* Now we run 100 epochs using mini-batches of size 100

Epoch [0/100], Average Loss: 0.7102

Epoch [10/100], Average Loss: 0.5707
Epoch [20/100], Average Loss: 0.5621
Epoch [30/100], Average Loss: ©.5527
Epoch [40/100], Average Loss: 0.5417
Epoch [50/100], Average Loss: 0.5260
Epoch [60/100], Average Loss: 0.5058
Epoch [70/100], Average Loss: 0.4798
Epoch [80/100], Average Loss: 0.4524
Epoch [90/100], Average Loss: 0.4282

We have never seen sample MSEs so low!

Evaluate on the test set

* Remembertouse torch.no grad () forfaster evaluation

Evaluate the model with test data (optional)

with torch.no _grad():
y _pred _test = net(X_test tensor)
test _loss = loss_function(y_pred test, y_test tensor)
print(f'Test Loss: {test loss.item():.4f}")

 Note:
* The net model was moved back to the CPU.
* The testing data is on the CPU.

* We could have left the net model on the GPU and moved the testing data
to the GPU.

Epoch [0/100], Average Loss: 0.7102

Epoch [10/100], Average Loss: ©0.5707
Epoch [20/100], Average Loss: 0.5621
Epoch [30/100], Average Loss: ©.5527
Epoch [40/100], Average Loss: 0.5417
Epoch [50/100], Average Loss: 0.5260 Test Loss: ©.7296
Epoch [60/100], Average Loss: ©0.5058
Epoch [70/100], Average Loss: 0.4798
Epoch [80/100], Average Loss: 0.4524
Epoch [90/100], Average Loss: 0.4282

No method has achieved a test loss so... high!

Question: Why is the test loss so much higher than the training loss?
Answer: The network has overfit to the training data.

Overfitting

* Recall that the training error for nearest neighbor (NN) was zero,
but the testing error was large.

* NN essentially “memorized” the training data, and gave good predictions
for the training data.

* The model did not generalize to new inputs: it had high errors for points
not in the training data.

* When this happens using parametric models, it is called
overfitting.

10 pointsfromy = x + N(0,1)

Plot of y = x + Gaussian noise

10 4

T
10

Least Squares fit, 10t Degree Polynomial

° Linear para metric model USing 10th Degree Polynomial Fit to Points with Gaussian Noise
10t degree polynomial basis. o

* The model perfectly predicts 8 -
every training point! 6

* The model will have significant . “]
error for new points. 2

Least Squares fit, 10t Degree Polynomial

* Linear parametric model using
10t degree polynomial basis.

* The model perfectly predicts
every training point!

* The model will have significant
error for new points.

* A linear fit (with no basis) would
provide better predictions for
new points!

Linear and 10th Degree Polynomial Fit to Points with Gaussian Noise

— Linear Fit
10 4 —— 10th Degree Polynomial Fit

Overfitting

* When training parametric models with gradient descent, initially
the loss decreases on the training and testing sets.
* The modelis learning general trends in the data that generalize to new
points.

* Eventually, the model starts to learn specific trends in the training
data that do not generalize to new points.

* This typically results in lower loss on the training data, but higher loss (or
no change in loss) for the testing data.

Plotting Training vs Testing Loss (General Case)

Idea: Stop training when the Overfitting begins

testing loss starts increasing. A

\ Training loss

>

Testing loss

lteration or Epochs

Plotting Training vs Testing Loss (GPA Data)

* With a relatively simple
problem, overfitting begins
within the first epoch!

Loss

0.75 A

0.70

0.865 ~

0.60 ~

0.55 A

0.50 A

0.45

0.40

Training and Testing Loss Over Epochs

—— Training Loss
Testing Loss

T T T T T T
0 20 40 60 80 100
Epoch

Overfitting and Model Complexity/Capacity

 Notice that we can’t overfit this
data using a line!

* The model complexity or model
capacity refers to a parametric
model’s ability to represent
general functions.

* Models with higher

complexity/capacity can represent
more functions.

* Models with higher
complexity/capacity are more prone
to over-fitting.

Linear and 10th Degree Polynomial Fit to Points with Gaussian Noise

—— Linear Fit
10 4 —— 10th Degree Polynomial Fit

Avoiding Over-Fitting (Overview of Strategies)

1. Early stopping: Stop training when testing error increases.
* Typically split data into training, validation, and testing
* Stop training when the error on the validation set begins to increase
* This ensures that the training process never looks at the testing data

2. Include a “regularization” term in the loss function
« Complete details are beyond the scope of this course.

* Regularization terms increase the loss the farther the weight vector is
from zero: Lo (W, D) = L(w, D) + A||w]||

« Often using the L1 norm, |[|w|| = Zj|wj| orthe L2 netm ||w]| = (X w?.

3. Other strategies (e.g., dropout)
4. Use alarge network!

||-]| denotes a norm (a
notion of “length”)

“Use a large network”: Double Descent

* Large networks seem like they should be particularly prone to

overfitting.

* When trained sufficiently on large amounts of data, empirical
evidence suggests that deep (large) networks tend not to over-fit!

This phenomenon, called
double descent, is an
active research topic!

0.0

i
B Training Error (Eivain) ! : '=
® Test Error (Eiest) ? | ".
Y
n N B
$ 1
’.'-‘._‘_.....-‘ ’l 1
l-‘.‘l. ."."'0‘. ,.” : '\
1 \ "
ug . DO 1% Interpolation
- Ty | } Threshold
ll | b\
[L.
a : e,
- -
.‘1-1. : .‘.'.*““Muo-o-o-&u
Ll]] |||"|I_|J. i [IR A TR W (P N P
1071 10Y 10

Parameters/Data o,

srating

Dodad e

youl.

	COMPSCI 389�Introduction to Machine Learning
	Note: This presentation covers (and provides additional context/information regarding)�10.5 Introduction to PyTorch.ipynb
	Autograd
	Deep Learning Libraries
	Deep Learning Libraries
	PyTorch
	Defining a Neural Network Architecture�Defining a Parametric Model
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Loss Function
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	A note about backward()
	Slide Number 19
	Results
	Runtime
	PyTorch and CUDA
	Training on the GPU
	Slide Number 24
	Slide Number 25
	Mini-Batches (GPU)
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	What do we expect to happen?
	Slide Number 32
	Evaluate on the test set
	Slide Number 34
	Overfitting
	10 points from 𝑦=𝑥+𝑁(0,1)
	Least Squares fit, 10th Degree Polynomial
	Least Squares fit, 10th Degree Polynomial
	Overfitting
	Plotting Training vs Testing Loss (General Case)
	Plotting Training vs Testing Loss (GPA Data)
	Overfitting and Model Complexity/Capacity
	Avoiding Over-Fitting (Overview of Strategies)
	“Use a large network”: Double Descent
	End

